Produce Hydrogen and Oxygen Simultaneously From a Single Atom! Achieve Carbon Neutrality with an ‘All-in-One’ Single-Atom Water Electrolysis Catalyst | Newswise


Newswise — Green hydrogen production technology, which utilizes renewable energy to produce eco-friendly hydrogen without carbon emissions, is gaining attention as a core technology for addressing global warming. Green hydrogen is produced through electrolysis, a process that separates hydrogen and oxygen by applying electrical energy to water, requiring low-cost, high-efficiency, high-performance catalysts.

The Korea Institute of Science and Technology (KIST, President Oh Sang-rok) announced that a research team led by Dr. Na Jongbeom and Dr. Kim Jong Min from the Center for Extreme Materials Research has developed next-generation water electrolysis catalyst technology. This technology integrates a single-atom ‘All-in-one’ catalyst precisely controlled down to the atomic level with binder-free electrode technology. A key feature of this technology is its ability to stably perform both hydrogen evolution and oxygen evolution reactions simultaneously on a single electrode.

Existing electrolysis systems had limitations requiring different catalysts and electrode structures for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), necessitating the use of large quantities of expensive precious metals. Additionally, the binder used to fix the catalyst to the electrode posed problems, including reduced electrical conductivity and catalyst detachment during long-term operation.

KIST researchers utilized atomic-level precision control technology to uniformly disperse iridium (Ir) atoms across the surface of a manganese (Mn)-nickel (Ni)-based layered double hydroxide (LDH) support incorporating phytic acid. This strategy replaced the conventional use of bulk iridium precious metal. By maximizing the number of active sites for water-splitting reactions with minimal iridium, this approach is analogous to evenly spreading fine grains of sand over a large surface rather than relying on a single large rock.

In particular, the iridium single atom acts as a direct active site for the hydrogen evolution reaction through its strong interaction with the support, while simultaneously enhancing the catalytic performance of the nickel-based active site where the oxygen evolution reaction occurs. Thus, a single-atom catalyst has realized bifunctional catalytic characteristics, exhibiting suitable reactivity for both reactions. Furthermore, the research team applied a method of directly growing the catalyst on the electrode surface, achieving an electrode structure that does not require a separate binder. This significantly improved electrical conductivity and ensured excellent durability even during long-term operation.

This technology significantly reduces precious metal usage to within 1.5% compared to existing precious metal catalysts while achieving outstanding performance in both hydrogen and oxygen evolution reactions. In addition, it demonstrates high stability with minimal performance degradation even after continuous operation for over 300 hours in an anion exchange membrane (AEM) water electrolysis system. This research outcome demonstrates the technical feasibility of simultaneously enhancing the economic viability and durability of electrolysis systems by minimizing precious metal usage and simplifying electrode structures. It is expected to significantly contribute to the commercialization of green hydrogen production and the reduction of hydrogen production costs in the future.

Dr. Na Jongbeom of KIST stated, “This work is highly significant as it resolves the two essential reactions for hydrogen production using a single catalyst while reducing precious metal consumption.” He added, “This technology will accelerate the commercialization of water electrolysis devices and provide substantial support for expanding hydrogen energy.”

###

KIST was established in 1966 as the first government-funded research institute in Korea. KIST now strives to solve national and social challenges and secure growth engines through leading and innovative research. For more information, please visit KIST’s website at https://kist.re.kr//eng/index.do

This research was conducted with support from the Ministry of Science and ICT (Minister Bae Kyung-hoon) through KIST’s Institutional Program and Excellent New Researcher Program (RS-2024-00350423), the DACU Core Technology Development Project (RS-2023-00259920), and the Korea-US-Japan International Joint Research Project (Global-24-003). The research results were published in the latest issue of the international journal Advanced Energy Materials (IF: 26.0, JCR (%): 2.5%).




KRICT Demonstrates 100kg per day Sustainable Aviation Fuel Production from Landfill Gas | Newswise


Newswise — The aviation industry accounts for a significant share of global carbon emissions. In response, the international community is expanding mandatory use of Sustainable Aviation Fuel (SAF), which is produced from organic waste or biomass and is expected to significantly reduce greenhouse gas emissions compared to conventional fossil-based jet fuel. However, high production costs remain a major challenge, leading some airlines in Europe and Japan to pass SAF-related costs on to consumers.

Against this backdrop, a research team led by Dr. Yun-Jo Lee at the Korea Research Institute of Chemical Technology (KRICT), in collaboration with EN2CORE Technology Co., Ltd., has successfully demonstrated an integrated process that converts landfill gas generated from organic waste—such as food waste—into aviation fuel.

Currently, the refining industry mainly produces SAF from used cooking oil. However, used cooking oil is limited in supply and is also used for other applications such as biodiesel, making it relatively expensive and difficult to secure in large quantities. In contrast, landfill gas generated from food waste and livestock manure is abundant and inexpensive. This study represents the first domestic demonstration of aviation fuel production using landfill gas as the primary feedstock.

Producing aviation fuel from landfill gas requires overcoming two major challenges: purifying the gas to obtain suitable intermediates and improving the efficiency of converting gaseous intermediates into liquid fuels. The research team addressed these challenges by developing an integrated process encompassing landfill gas pretreatment, syngas production, and catalytic conversion of syngas into liquid fuels.

EN2CORE Technology was responsible for the upstream processes. Landfill gas collected from waste disposal sites is desulfurized and treated using membrane-based separation to reduce excess carbon dioxide. The purified gas is then converted into synthesis gas—containing carbon monoxide and hydrogen—using a proprietary plasma reforming reactor, and subsequently supplied to KRICT.

KRICT applied the Fischer–Tropsch process to convert the gaseous syngas into liquid fuels. In this process, hydrogen and carbon react on a catalyst surface to form hydrocarbon chains. Hydrocarbons of appropriate chain length become liquid fuels, while longer chains form solid byproducts such as wax. By employing zeolite- and cobalt-based catalysts, KRICT significantly improved selectivity toward liquid fuels rather than solid byproducts.

A key innovation of this work is the application of a microchannel reactor. Excessive heat generation during aviation fuel synthesis can damage catalysts and reduce process stability. The microchannel reactor developed by the team features alternating layers of catalyst and coolant channels, enabling rapid heat removal and suppression of thermal runaway. Through integrated and modular design, the reactor volume was reduced by up to one-tenth compared to conventional systems. Production capacity can be expanded simply by adding modules.

For demonstration purposes, the team constructed an integrated pilot facility on a landfill site in Dalseong-gun, Daegu. The facility, approximately 100 square meters in size and comparable to a two-story detached house, successfully produced 100 kg of sustainable aviation fuel per day, achieving a liquid fuel selectivity exceeding 75 percent. The team is currently optimizing long-term operation conditions and further enhancing catalyst and reactor performance.

This achievement demonstrates the potential to convert everyday waste-derived gases from food waste and sewage sludge into high-value aviation fuel. Moreover, it shows that aviation fuel production—previously limited to large-scale centralized plants—can be realized at local landfills or small waste treatment facilities. The technology is therefore expected to contribute to the establishment of decentralized SAF production systems and strengthen the competitiveness of Korea’s SAF industry.

The research team noted that the work is significant in securing an integrated process technology that converts organic waste into high-value fuels. KRICT President Young-Kuk Lee stated that the technology has strong potential to become a representative solution capable of achieving both carbon neutrality and a circular economy.

The development of two catalysts enabling selective production of liquid fuels was published as an inside cover article in ACS Catalysis (November 2025) and in Fuel (January 2026).

###

KRICT is a non-profit research institute funded by the Korean government. Since its foundation in 1976, KRICT has played a leading role in advancing national chemical technologies in the fields of chemistry, material science, environmental science, and chemical engineering. Now, KRICT is moving forward to become a globally leading research institute tackling the most challenging issues in the field of Chemistry and Engineering and will continue to fulfill its role in developing chemical technologies that benefit the entire world and contribute to maintaining a healthy planet. More detailed information on KRICT can be found at https://www.krict.re.kr/eng/

This research was supported by “Development of integrated demonstration process for the production of bio naphtha/lubricant oil from organic waste-derived biogas” (Project No. RS-2022-NR068680) through the National Research Foundation (NRF) funded by the Ministry of Science and ICT (MSIT), Republic of Korea.




Battery Game Changer: AI Identifies Key Conditions for All-Solid-State Battery Electrolyte Materials | Newswise


Newswise — Lithium-ion batteries serve as the core energy storage devices in various industries and everyday products, including smartphones, electric vehicles, and ESS (energy storage systems). However, conventional lithium-ion batteries use liquid electrolytes, posing a risk of fire or explosion when subjected to external impact or overheating. Recent electric vehicle fire incidents have heightened concerns about their safety. As an alternative to overcome these limitations, ‘all-solid-state batteries’-which use non-flammable solid materials as electrolytes-are gaining attention as next-generation battery technology.

However, amorphous solid electrolytes-the core material for all-solid-state batteries-have faced limitations in analyzing lithium-ion transport mechanisms due to the irregularity of their internal structure. Consequently, performance improvements have been achieved empirically by altering electrolyte composition or compression conditions, making it difficult to systematically explain the causes of performance differences.

A research team led by Dr. Byungju, Lee at the Computational Science Research Center of the Korea Institute of Science and Technology (KIST, President Sang-Rok Oh) has identified key factors governing lithium ion movement in amorphous solid electrolytes through AI-based atomic simulations. The team analyzed lithium-ion movement by distinguishing it into ‘ease of movement between sites’ and ‘connectivity of movement paths’. They confirmed that overall performance is more significantly influenced by the difficulty of ions moving from one site to the next than by path connectivity.

In fact, while ion conductivity performance varied by up to fivefold depending on lithium ion mobility, the effect of pathway connectivity was limited to approximately a twofold difference. This provides a quantitative basis for interpreting performance variations that were previously difficult to explain due to the amorphous structure. Furthermore, the research team identified specific structural conditions that enhance lithium ion mobility. The higher the proportion of structures where four sulfur atoms surrounded a lithium ion, the faster the ion migration became. Optimal performance was achieved when the size of the internal void space fell within an appropriate range. Notably, excessively large voids actually hindered ion migration and degraded performance. This finding overturns the conventional wisdom that ‘lower density leads to higher conductivity’.

The results of this study can be directly applied to the design and manufacturing process of solid electrolytes for all-solid-state batteries. Simply controlling the internal structure by adjusting the electrolyte composition ratio or compression/molding conditions can improve ionic conductivity performance without requiring additional material changes, making it highly applicable in industrial settings. Furthermore, the analytical method proposed in this study can be extended to the development of various solid electrolyte materials. By pre-selecting high-performance candidate materials, it can dramatically enhance performance prediction and accelerate material development speed. This is expected to advance the commercialization of all-solid-state batteries in fields where safety and energy density are critical, such as electric vehicles and energy storage devices.

Dr. Byungju, Lee of KIST stated, “This research is significant in that it clearly identifies the key factors determining the performance of amorphous solid electrolytes.” He added, “As it presents design criteria enabling systematic improvement of material performance, we expect it to contribute to accelerating the commercialization of all-solid-state batteries.”

###

KIST was established in 1966 as the first government-funded research institute in Korea. KIST now strives to solve national and social challenges and secure growth engines through leading and innovative research. For more information, please visit KIST’s website at https://kist.re.kr//eng/index.do

This research was conducted as part of KIST’s major projects and the Materials Global Young Connect Project (RS-2024-00407995), supported by the Ministry of Science and ICT (Minister Bae Kyung-hoon). The research findings were published in the latest issue of the international journal Advanced Energy Materials (IF 26.0, JCR field 2.5%).




Infrared Spectroscopy Sheds New Light on the Future of Protonic Ceramic Cells | Newswise


Newswise — With the global shift toward renewable energy, solid oxide–based electrochemical devices have become essential for hydrogen production, energy storage, and fuel-to-electricity conversion. Traditional oxygen-ion–conducting cells require high operating temperatures, creating cost, durability, and material compatibility challenges. Protonic ceramic cells (PCCs) offer an alternative, operating efficiently at 300–600 °C and allowing the use of cheaper components, improved thermal cycling, and enhanced stability. Despite rapid progress in materials engineering, the fundamental mechanisms governing hydration, proton conduction, and electrode reactions remain insufficiently understood. These gaps hinder rational catalyst design and slow the translation of new materials into practical PCC devices. Based on these challenges, there is a critical need to deeply investigate proton behavior, interfacial chemistry, and catalytic mechanisms.

Researchers from Idaho National Laboratory and collaborating universities published (DOI: 10.1016/j.esci.2025.100437) a comprehensive review on August 2025, in eScience, detailing how diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is transforming protonic ceramic cell research. The article summarizes recent breakthroughs in applying DRIFTS to oxygen electrodes, proton-conducting electrolytes, and hydrogen electrodes under realistic operating conditions. By capturing surface intermediates and hydration signatures, the review highlights DRIFTS as an essential technique for understanding reaction pathways, improving proton uptake, and guiding next-generation materials design for high-performance PCC systems. This platform was recently reported in a research article by the same group in Energy Environmental Science, providing the substantial evidence on how it is powerful in electrochemical system at elevated temperatures, specifically for PCC.

The review outlines how DRIFTS enables direct observation of surface species and dynamic reactions across PCC components. For oxygen electrodes, DRIFTS detects hydroxyl stretching bands associated with proton uptake, providing insights into triple-conducting materials such as PrNi₀.₅Co₀.₅O₃–δ, PrBaCo₂O₅+δ, and high-entropy perovskites. Doping-induced enhancements—such as Zn-stabilized hydration sites or Cs-driven oxygen vacancy formation—are revealed through stronger –OH peaks and temperature-dependent hydration behavior. DRIFTS also verifies steam-induced structural transformations, including monoclinic-to-cubic transitions and the emergence of multi-phase composites that improve catalytic performance.

For protonic electrolytes, DRIFTS distinguishes Zr–OH–Zr and Zr–OH–X environments, enabling researchers to identify proton trapping, dehydration kinetics, and dopant-dependent hydrogen-bonding effects in materials like Sc- and Y-doped BaZrO₃. The technique further detects carbonate residues that impair sintering, guiding optimized fabrication routes.

In catalytic applications, DRIFTS captures intermediates during CO₂ hydrogenation, methane reforming, and chemical-fuel co-conversion, identifying formates, carbonates, and CO adsorption species crucial to mechanistic understanding. Emerging operando DRIFTS configurations with applied voltage demonstrate the movement of surface protons during real electrochemical reactions, validating proton migration and reaction coupling at electrode interfaces. Collectively, the review shows how DRIFTS bridges fundamental chemistry with practical PCC engineering.

According to the authors, DRIFTS provides a uniquely powerful lens for understanding how PCC materials behave under realistic conditions. They emphasize that the ability to monitor hydration, proton uptake, and catalytic intermediates in real time offers insights unavailable from traditional characterization tools. The authors note that integrating DRIFTS with complementary methods—such as synchrotron-based IR, X-ray spectroscopy, and computational modeling—will further expand its impact. They conclude that establishing operando DRIFTS systems capable of applying electrical load represents a critical next step for unraveling the complex, surface-driven processes that dictate PCC performance.

The review underscores that advancing DRIFTS techniques will accelerate the rational design of PCC materials for clean-energy technologies. Improved understanding of hydration behavior and proton migration can guide the development of durable oxygen electrodes, CO₂-tolerant electrolytes, and carbon-resistant hydrogen electrodes. Insights into reaction intermediates also support catalyst optimization for hydrogen production, CO₂ reduction, methane reforming, and value-added chemical synthesis. As energy systems evolve toward efficiency and sustainability, DRIFTS-enabled mechanistic knowledge will help bridge laboratory discoveries and scalable PCC devices. Ultimately, the authors note that expanding operando DRIFTS capabilities will be essential for building the next generation of robust, high-performance ceramic energy systems.

###

References

DOI

10.1016/j.esci.2025.100437

Original Source URL

https://doi.org/10.1016/j.esci.2025.100437

Funding information

This work is supported by the HydroGEN Advanced Water Splitting Materials Consortium, established as part of the Energy Materials Network under the U.S. Department of Energy (USDOE); the Office of Energy Efficiency and Renewable Energy (EERE); and the Hydrogen and Fuel Cell Technologies Office (HFTO), under DOE Idaho Operations Office, under contract no. DE-AC07-05ID14517.

About eScience

eScience – a Diamond Open Access journal cooperated with KeAi and published online at ScienceDirect. eScience is founded by Nankai University (China) in 2021 and aims to publish high quality academic papers on the latest and finest scientific and technological research in interdisciplinary fields related to energy, electrochemistry, electronics, and environment. eScience provides insights, innovation and imagination for these fields by built consecutive discovery and invention. Now eScience has been indexed by SCIE, CAS, Scopus and DOAJ. Its impact factor is 36.6, which is ranked first in the field of electrochemistry.