Two WHOI Scientists Honored with Lifetime Achievement Award for Advances in Oil-Spill Forensics | Newswise


Robert Nelson and Christopher Reddy recognized for pioneering use of GCxGC to track and understand marine pollution

Newswise — Woods Hole, Mass. (February 20, 2026) — Two chemical oceanographers from the Woods Hole Oceanographic Institution (WHOI) are being awarded the 2026 Lifetime Scientific Achievement Award by the International Symposium on Comprehensive Multidimensional Chromatography.

Robert Nelson and Christopher Reddy, both in the Department of Marine Chemistry and Geochemistry, are being recognized for more than 15 years of continuous, high-impact contributions in the field of comprehensive two-dimensional gas chromatography, commonly known as GCxGC

GCxGC is an advanced analytical technique that separates and identifies highly complex mixtures of chemicals with exceptional detail.

With more than 60 years of combined experience, Nelson and Reddy have pioneered the use of this method to analyze pollutants in the ocean, revolutionizing the field of oil-spill forensics. Their work has advanced scientific understanding and informed response strategies for some of the most significant oil spills in recent history, including the 2010 Deepwater Horizon disaster, as well as spills in San Francisco, Massachusetts, Florida, Texas, and California, and internationally in Brazil, Sri Lanka, Mauritius, Korea, and Japan.

“As an oceanographer, I am particularly proud that this award is selected by, and presented to, analytical chemists—a field dedicated to advancing how chemicals are measured,” Reddy said. “It is a tremendous honor to have our work recognized by this community.”

“What is especially meaningful to me is that Chris and I worked so closely together—often on site collecting samples on boats and beaches, analyzing them, and writing about the results,” Nelson added. “This award reflects not just our technical work, but a long-term partnership forged in the field and in the lab.”

The Lifetime Scientific Achievement Award for GCxGC Research is one of the highest honors bestowed by the GCxGC community, recognizing sustained innovation and impact in analytical chemistry and separation science. Nelson and Reddy will receive the award at the 44th International Symposium on Capillary Chromatography & 21st GCxGC Symposium in Riva del Garda, Italy, this spring.

About Woods Hole Oceanographic Institution

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Massachusetts, dedicated to marine research, engineering, and higher education. Established in 1930, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate an understanding of the ocean’s role in the changing global environment. Top scientists, engineers, and students collaborate on more than 800 concurrent projects worldwide—both above and below the waves—pushing the boundaries of knowledge and possibility.

 




Produce Hydrogen and Oxygen Simultaneously From a Single Atom! Achieve Carbon Neutrality with an ‘All-in-One’ Single-Atom Water Electrolysis Catalyst | Newswise


Newswise — Green hydrogen production technology, which utilizes renewable energy to produce eco-friendly hydrogen without carbon emissions, is gaining attention as a core technology for addressing global warming. Green hydrogen is produced through electrolysis, a process that separates hydrogen and oxygen by applying electrical energy to water, requiring low-cost, high-efficiency, high-performance catalysts.

The Korea Institute of Science and Technology (KIST, President Oh Sang-rok) announced that a research team led by Dr. Na Jongbeom and Dr. Kim Jong Min from the Center for Extreme Materials Research has developed next-generation water electrolysis catalyst technology. This technology integrates a single-atom ‘All-in-one’ catalyst precisely controlled down to the atomic level with binder-free electrode technology. A key feature of this technology is its ability to stably perform both hydrogen evolution and oxygen evolution reactions simultaneously on a single electrode.

Existing electrolysis systems had limitations requiring different catalysts and electrode structures for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), necessitating the use of large quantities of expensive precious metals. Additionally, the binder used to fix the catalyst to the electrode posed problems, including reduced electrical conductivity and catalyst detachment during long-term operation.

KIST researchers utilized atomic-level precision control technology to uniformly disperse iridium (Ir) atoms across the surface of a manganese (Mn)-nickel (Ni)-based layered double hydroxide (LDH) support incorporating phytic acid. This strategy replaced the conventional use of bulk iridium precious metal. By maximizing the number of active sites for water-splitting reactions with minimal iridium, this approach is analogous to evenly spreading fine grains of sand over a large surface rather than relying on a single large rock.

In particular, the iridium single atom acts as a direct active site for the hydrogen evolution reaction through its strong interaction with the support, while simultaneously enhancing the catalytic performance of the nickel-based active site where the oxygen evolution reaction occurs. Thus, a single-atom catalyst has realized bifunctional catalytic characteristics, exhibiting suitable reactivity for both reactions. Furthermore, the research team applied a method of directly growing the catalyst on the electrode surface, achieving an electrode structure that does not require a separate binder. This significantly improved electrical conductivity and ensured excellent durability even during long-term operation.

This technology significantly reduces precious metal usage to within 1.5% compared to existing precious metal catalysts while achieving outstanding performance in both hydrogen and oxygen evolution reactions. In addition, it demonstrates high stability with minimal performance degradation even after continuous operation for over 300 hours in an anion exchange membrane (AEM) water electrolysis system. This research outcome demonstrates the technical feasibility of simultaneously enhancing the economic viability and durability of electrolysis systems by minimizing precious metal usage and simplifying electrode structures. It is expected to significantly contribute to the commercialization of green hydrogen production and the reduction of hydrogen production costs in the future.

Dr. Na Jongbeom of KIST stated, “This work is highly significant as it resolves the two essential reactions for hydrogen production using a single catalyst while reducing precious metal consumption.” He added, “This technology will accelerate the commercialization of water electrolysis devices and provide substantial support for expanding hydrogen energy.”

###

KIST was established in 1966 as the first government-funded research institute in Korea. KIST now strives to solve national and social challenges and secure growth engines through leading and innovative research. For more information, please visit KIST’s website at https://kist.re.kr//eng/index.do

This research was conducted with support from the Ministry of Science and ICT (Minister Bae Kyung-hoon) through KIST’s Institutional Program and Excellent New Researcher Program (RS-2024-00350423), the DACU Core Technology Development Project (RS-2023-00259920), and the Korea-US-Japan International Joint Research Project (Global-24-003). The research results were published in the latest issue of the international journal Advanced Energy Materials (IF: 26.0, JCR (%): 2.5%).




WHOI’s Alan Seltzer earns prestigious F.G. Houtermans Award | Newswise


Newswise — Woods Hole, Mass. (February 4, 2026) – Alan Seltzer, an affiliated scientist at Woods Hole Oceanographic Institution (WHOI), assistant professor at University College Dublin, and former WHOI postdoctoral scholar, has been named the 2026 recipient of the F.G. Houtermans Award by the European Association of Geochemistry (EAG). The award is among the highest international honors recognizing early-career scientists in geochemistry.

Seltzer is being recognized for pioneering the use of dissolved gas isotopes to quantify physical and biogeochemical processes across the Earth system, including exploring the sensitivity of groundwater systems to climate and the dynamics of atmosphere-ocean gas exchange. Much of the work cited by the award committee was conducted at WHOI, where Seltzer was a postdoctoral scholar from 2019 to 2021 and later a member of the scientific staff in the Marine Chemistry and Geochemistry Department, where he established a gas isotope tracer laboratory and developed several new analytical techniques.

His research helped open new pathways for using noble gas and nitrogen isotopes to investigate groundwater, seawater, air, and volcanic gases. Seltzer also helped extend high-precision noble gas isotope techniques to volcanic systems in collaboration with WHOI associate scientist Peter Barry to better understand the origins and transport pathways of volatiles from Earth’s deep interior. He also expanded oceanic applications of noble gas tracers for air-sea interaction and glacial meltwater circulation with WHOI scientists Bill Jenkins and Roo Nicholson, and more recently advanced high-precision tools for quantifying nitrogen cycling in aquatic environments in collaboration with MIT-WHOI Joint Program student Katelyn McPaul and WHOI associate scientist Scott Wankel.

“It is an honor to be recognized with the F.G. Houtermans Award,” Seltzer said. “WHOI has a special culture in which collaboration and high-risk science are celebrated, and without the encouragement and freedom at WHOI to take risks, push analytical limits, and fail a lot along the way, much of my work would not have been possible. I’m deeply grateful for all the support I’ve received from the WHOI community over my career so far.”

Seltzer’s selection continues a notable streak for WHOI’s Marine Chemistry and Geochemistry Department. Former WHOI postdoctoral scholar David Bekaert received the Houtermans Award in 2025, marking back-to-back years in which the honor has gone to WHOI-trained scientists—a rare distinction that highlights the strength and impact of the Institution’s postdoctoral program.

The 2026 F.G. Houtermans Award will be formally presented at the Goldschmidt Conference in July.

About Woods Hole Oceanographic Institution

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Massachusetts, dedicated to marine research, engineering, and higher education. Established in 1930, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate an understanding of the ocean’s role in the changing global environment. Top scientists, engineers, and students collaborate on more than 800 concurrent projects worldwide—both above and below the waves—pushing the boundaries of knowledge and possibility. 




KRICT Demonstrates 100kg per day Sustainable Aviation Fuel Production from Landfill Gas | Newswise


Newswise — The aviation industry accounts for a significant share of global carbon emissions. In response, the international community is expanding mandatory use of Sustainable Aviation Fuel (SAF), which is produced from organic waste or biomass and is expected to significantly reduce greenhouse gas emissions compared to conventional fossil-based jet fuel. However, high production costs remain a major challenge, leading some airlines in Europe and Japan to pass SAF-related costs on to consumers.

Against this backdrop, a research team led by Dr. Yun-Jo Lee at the Korea Research Institute of Chemical Technology (KRICT), in collaboration with EN2CORE Technology Co., Ltd., has successfully demonstrated an integrated process that converts landfill gas generated from organic waste—such as food waste—into aviation fuel.

Currently, the refining industry mainly produces SAF from used cooking oil. However, used cooking oil is limited in supply and is also used for other applications such as biodiesel, making it relatively expensive and difficult to secure in large quantities. In contrast, landfill gas generated from food waste and livestock manure is abundant and inexpensive. This study represents the first domestic demonstration of aviation fuel production using landfill gas as the primary feedstock.

Producing aviation fuel from landfill gas requires overcoming two major challenges: purifying the gas to obtain suitable intermediates and improving the efficiency of converting gaseous intermediates into liquid fuels. The research team addressed these challenges by developing an integrated process encompassing landfill gas pretreatment, syngas production, and catalytic conversion of syngas into liquid fuels.

EN2CORE Technology was responsible for the upstream processes. Landfill gas collected from waste disposal sites is desulfurized and treated using membrane-based separation to reduce excess carbon dioxide. The purified gas is then converted into synthesis gas—containing carbon monoxide and hydrogen—using a proprietary plasma reforming reactor, and subsequently supplied to KRICT.

KRICT applied the Fischer–Tropsch process to convert the gaseous syngas into liquid fuels. In this process, hydrogen and carbon react on a catalyst surface to form hydrocarbon chains. Hydrocarbons of appropriate chain length become liquid fuels, while longer chains form solid byproducts such as wax. By employing zeolite- and cobalt-based catalysts, KRICT significantly improved selectivity toward liquid fuels rather than solid byproducts.

A key innovation of this work is the application of a microchannel reactor. Excessive heat generation during aviation fuel synthesis can damage catalysts and reduce process stability. The microchannel reactor developed by the team features alternating layers of catalyst and coolant channels, enabling rapid heat removal and suppression of thermal runaway. Through integrated and modular design, the reactor volume was reduced by up to one-tenth compared to conventional systems. Production capacity can be expanded simply by adding modules.

For demonstration purposes, the team constructed an integrated pilot facility on a landfill site in Dalseong-gun, Daegu. The facility, approximately 100 square meters in size and comparable to a two-story detached house, successfully produced 100 kg of sustainable aviation fuel per day, achieving a liquid fuel selectivity exceeding 75 percent. The team is currently optimizing long-term operation conditions and further enhancing catalyst and reactor performance.

This achievement demonstrates the potential to convert everyday waste-derived gases from food waste and sewage sludge into high-value aviation fuel. Moreover, it shows that aviation fuel production—previously limited to large-scale centralized plants—can be realized at local landfills or small waste treatment facilities. The technology is therefore expected to contribute to the establishment of decentralized SAF production systems and strengthen the competitiveness of Korea’s SAF industry.

The research team noted that the work is significant in securing an integrated process technology that converts organic waste into high-value fuels. KRICT President Young-Kuk Lee stated that the technology has strong potential to become a representative solution capable of achieving both carbon neutrality and a circular economy.

The development of two catalysts enabling selective production of liquid fuels was published as an inside cover article in ACS Catalysis (November 2025) and in Fuel (January 2026).

###

KRICT is a non-profit research institute funded by the Korean government. Since its foundation in 1976, KRICT has played a leading role in advancing national chemical technologies in the fields of chemistry, material science, environmental science, and chemical engineering. Now, KRICT is moving forward to become a globally leading research institute tackling the most challenging issues in the field of Chemistry and Engineering and will continue to fulfill its role in developing chemical technologies that benefit the entire world and contribute to maintaining a healthy planet. More detailed information on KRICT can be found at https://www.krict.re.kr/eng/

This research was supported by “Development of integrated demonstration process for the production of bio naphtha/lubricant oil from organic waste-derived biogas” (Project No. RS-2022-NR068680) through the National Research Foundation (NRF) funded by the Ministry of Science and ICT (MSIT), Republic of Korea.




Elevated Lead Levels Could Flow From Some US Drinking Water Kiosks | Newswise


Newswise — After high-profile water crises like the one in Flint, Michigan, some Americans distrust the safety of tap water, choosing to purchase drinking water from freestanding water vending machines or kiosks. Yet this more expensive water may contain different pollutants than local tap water, according to a study in ACS’ Environmental Science & Technology. Researchers report that water sampled from 20 kiosks in six states sometimes contained lead at levels above public health recommendations.

“Currently, water kiosks are not regulated the same as tap water; their water is not tested for lead or other metals,” says Samantha Zuhlke, a corresponding author of this study. “Updating water kiosk regulations can improve their quality and help consumers make informed decisions about the water they are drinking.”

Water kiosks are privately owned vending machines that are often marketed as being safer than tap water, commanding prices of $0.25-$0.35 per gallon (compared to less than 2 cents per gallon for tap water in most U.S. cities). Kiosk operators generally treat local tap water with purification techniques such as filtration, ultraviolet light or reverse osmosis (RO) to remove potentially harmful contaminants such as lead, microbes, residual disinfectants, and per- and polyfluoroalkyl substances (PFAS). But water vending machines in the U.S. are poorly regulated. So, a team of researchers led by Zuhlke and David Cwiertny conducted a comprehensive comparison of the chemical and microbial characteristics of kiosk water and tap water from municipalities close to the monitored kiosks.

The team collected water samples from 20 kiosks operated by four different manufacturers across Iowa and in the surrounding states of Illinois, Kansas, Missouri, Arkansas and Oklahoma. Most of the kiosks advertised treatment of their water by RO, a process that uses pressure to force water through a semipermeable membrane, purifying the water and leaving most contaminants caught behind the membrane. For comparison, the researchers collected tap water samples from community sources within a mile of each kiosk.

They analyzed all samples and found no evidence of microbial contamination in any sample. They also found that RO treatment in kiosks effectively removed most PFAS from the sourced tap water. However, this benefit was offset by concerning levels of lead in some RO-purified kiosk water samples — nearly twice the concentration recommended by the U.S. Environmental Protection Agency.

The researchers traced the lead to the corrosion of brass plumbing in the kiosks following RO treatment. Although the plumbing components are marketed as “lead-free,” small amounts of the metal can leach under the low-pH and low-alkalinity conditions of RO-treated water, they say. Replacing the internal metal pieces with other materials could eliminate lead in dispensed water.

“This work adds to growing evidence that allowable levels of lead in ‘lead-free’ plumbing can still be problematic sources of lead in drinking water when such plumbing is exposed to certain types of water, like that generated after RO treatment,” Cwiertny says.

The authors acknowledge funding from the University of Iowa’s Center for Social Science Innovation and the Office of Undergraduate Research. This work was conducted through the University of Iowa Center for Health Effects of Environmental Contamination, which receives support through the Iowa Department of Natural Resources.

The paper’s abstract will be available on Feb. 11 at 8 a.m. Eastern time here:   

###

The American Chemical Society (ACS) is a nonprofit organization founded in 1876 and chartered by the U.S. Congress. ACS is committed to improving all lives through the transforming power of chemistry. Its mission is to advance scientific knowledge, empower a global community and champion scientific integrity, and its vision is a world built on science. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, e-books and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.

Registered journalists can subscribe to the ACS journalist news portal on EurekAlert! to access embargoed and public science press releases. For media inquiries, contact newsroom@acs.org.

Note: ACS does not conduct research but publishes and publicizes peer-reviewed scientific studies.

Follow us: Facebook | LinkedIn | Instagram




Expert Explains Why Snow Totals Can Vary Wildly for Winter Storms | Newswise


Newswise — Winter Storm Fern swept across a large swath of the southern and eastern United States, delivering not just a wide range of snow accumulation, but also snow types. Experts say one big reason for those differences comes from a meteorological phenomenon — that the same amount of total precipitation can deliver very different amounts of measurable snowfall, depending on the underlying conditions.

Barrett Gutter, a meteorologist at Virginia Tech who teaches classes in weather analysis, weather forecasting, and severe weather, explains that the snow-to-liquid ratio (SLR), or how much moisture is in a snowflake, can be impacted by a number of factors.

“Very dry snow, which often occurs in mountainous terrain and higher latitudes, can have SLR values closer to 20:1 (20″ of snow = 1″ of liquid), while very wet snow, which often occurs in the southeast, can have SLR values closer to 6:1,” he says.

This explains why snow totals in the Rocky Mountains are often much higher than along the east coast ranges. But elevation isn’t the only determining factor.

“Lower temperatures throughout the atmosphere will lead to drier and fluffier snow (higher SLR) since there tends to be less moisture available, while higher temperatures (closer to freezing) will lead to wetter and denser snow.”

Other factors that impact snow-to-liquid ratios include the height in which snowflakes form, moisture content, and wind speed.

This led to record snowfall totals in places like Toronto, which received nearly two feet of accumulation, while the mid-Atlantic got less total snow, but several inches of sleet, which settled into hard-packed ice.

About Gutter
Barrett Gutter is a collegiate assistant professor of meteorology. Gutter teaches a wide variety of courses, including Weather Analysis, Weather Forecasting, Severe Weather, and Radar and Satellite Meteorology. He also leads a two-week storm chase field course during the summer.

Interview
To schedule an interview with Barrett Gutter, contact Noah Frank at nafrank@vt.edu or 805-453-2556.




KRICT Develops Microfluidic Chip for One-Step Detection of PFAS and Other Pollutants | Newswise


Newswise — Environmental pollutant analysis typically requires complex sample pretreatment steps such as filtration, separation, and preconcentration. When solid materials such as sand, soil, or food residues are present in water samples, analytical accuracy often decreases, and filtration can unintentionally remove trace-level target pollutants along with the solids.

To address this challenge, a joint research team led by Dr. Ju Hyeon Kim at the Korea Research Institute of Chemical Technology (KRICT), in collaboration with Professor Jae Bem You’s group at Chungnam National University, has developed a microfluidic-based analytical device that enables direct extraction and analysis of pollutants from solid-containing samples without any pretreatment.

Water, food, and environmental samples encountered in daily life may contain trace amounts of hazardous contaminants that are invisible to the naked eye. Accurate detection requires selective extraction and concentration of target analytes, a process traditionally achieved using liquid–liquid extraction (LLE). However, conventional LLE requires large volumes of solvents and is difficult to automate. Although liquid–liquid microextraction (LLME) has been introduced to overcome these limitations, its practical application has remained limited because samples containing solid particles still require a filtration step prior to extraction.

Existing analytical approaches typically follow a multistep workflow—solid removal, extraction, and analysis—which increases time and cost while reducing analytical reliability. These limitations pose significant challenges in fields closely related to public health, including environmental monitoring, drinking water safety, and pharmaceutical residue analysis.

The research team overcame these issues by designing a trap-based microfluidic device that confines a small volume of extractant droplet inside a microchamber while allowing the sample solution to flow continuously through an adjacent microchannel. This configuration enables rapid and selective mass transfer of target analytes into the extractant, while solid particles pass through the channel without interference. After extraction, the extractant droplet can be retrieved for downstream analysis.

Using this device, the researchers successfully detected perfluorooctanoic acid (PFOA), a representative per- and polyfluoroalkyl substance (PFAS) increasingly regulated due to environmental and health concerns, as well as carbamazepine (CBZ), an anticonvulsant pharmaceutical compound. Notably, CBZ was extracted directly from sand-containing slurry samples without filtration. PFOA signals were detected within five minutes, and CBZ extracted from slurry samples was clearly identified using high-performance liquid chromatography (HPLC).

The results demonstrate that the proposed microfluidic platform significantly reduces analytical steps while maintaining high reliability, highlighting its potential as a compact and automatable solution for environmental pollution monitoring, food safety inspection, and pharmaceutical and bioanalytical applications.

Dr. Kim noted that “integrating multiple pretreatment steps into a single process offers substantial advantages for on-site analysis and automated systems,” while KRICT President Young-Kuk Lee emphasized that “this technology can enhance the reliability of environmental and food safety analyses that directly impact public health.”

The study was published as a cover article in ACS Sensors (Impact Factor: 9.1; top 3.2% in JCR Analytical Chemistry) in December 2025. Dr. Ju Hyeon Kim (KRICT) and Professor Jae Bem You (Chungnam National University) served as corresponding authors, with Sung Wook Choi as the first author.

###

KRICT is a non-profit research institute funded by the Korean government. Since its foundation in 1976, KRICT has played a leading role in advancing national chemical technologies in the fields of chemistry, material science, environmental science, and chemical engineering. Now, KRICT is moving forward to become a globally leading research institute tackling the most challenging issues in the field of Chemistry and Engineering and will continue to fulfill its role in developing chemical technologies that benefit the entire world and contribute to maintaining a healthy planet. More detailed information on KRICT can be found at https://www.krict.re.kr/eng/

The research was supported by the KRICT Core Research Program, the National Research Foundation of Korea, and the Korea–Switzerland Innovation Program.




Why Ozone Persists: The Invisible Chemistry Behind Clean Air | Newswise


Newswise — Ground-level ozone is a major air pollutant that threatens human health, ecosystems, and climate stability. Despite aggressive reductions in nitrogen oxides and primary volatile organic compounds, ozone levels continue to exceed air quality standards in many regions. This paradox reflects the complex and nonlinear nature of atmospheric photochemistry, where reactive radicals control ozone formation. Oxygenated volatile organic compounds (OVOCs) are key intermediates in this process, acting as both sources and sinks of radicals. However, most previous studies have measured only a small subset of OVOCs, leaving major uncertainties in radical budgets. Based on these challenges, there is a critical need to systematically investigate how a broader spectrum of OVOCs drives radical cycling and ozone formation.

In a study published (DOI: 10.1016/j.ese.2026.100659) in January 2026 in Environmental Science and Ecotechnology, researchers from the Southern University of Science and Technology, The Hong Kong Polytechnic University, Hong Kong Baptist University, Beijing University of Chemical Technology, and the University of Helsinki investigated how oxygenated volatile organic compounds shape atmospheric chemistry in background air over southern China. Combining intensive field observations with photochemical box modeling, the team examined the role of OVOCs in radical cycling and ozone formation. Their results show that commonly used models relying on limited OVOC measurements substantially misrepresent radical budgets and ozone production under real atmospheric conditions.

The study combined high-resolution field measurements with a detailed photochemical box model to quantify the role of OVOCs in atmospheric radical chemistry. When models were constrained using only three commonly measured OVOCs, simulated hydroxyl radical levels were overestimated by up to 100 percent. By contrast, including measurements of 23 OVOCs brought simulations into close agreement with observations.

The analysis revealed that OVOC photolysis contributed approximately 49–61 percent of total radical production, making it the dominant radical source in background air. Surprisingly, several OVOCs present at relatively low concentrations accounted for a disproportionate share of radical generation. Errors in simulating these compounds caused cascading biases in radical budgets, altering ozone formation pathways.

The study further showed that traditional chemical mechanisms systematically overestimate some OVOCs while underestimating others, masking offsetting errors that appear acceptable when only limited measurements are used. These hidden inaccuracies significantly affect predictions of ozone production rates and sensitivity regimes. Overall, the findings demonstrate that a narrow observational focus can lead to misleading conclusions about the drivers of ozone pollution.

“This work shows that what we don’t measure can matter more than what we do,” said one of the study’s senior authors. “OVOCs have often been treated as secondary products, but our results demonstrate that they are central to controlling radical chemistry and ozone formation. Without comprehensive OVOC observations, models may appear accurate while fundamentally misrepresenting atmospheric processes. Expanding OVOC measurements is therefore essential for designing effective air quality management strategies in regions struggling with persistent ozone pollution.”

These findings have important implications for air pollution control and atmospheric modeling worldwide. Strategies focused solely on reducing traditional ozone precursors may fail if OVOC-driven radical chemistry is ignored. Incorporating comprehensive OVOC measurements can improve model accuracy, guide emission control priorities, and help policymakers identify more effective mitigation pathways. The study also highlights the need to update chemical mechanisms and expand monitoring networks to include reactive OVOC intermediates. Ultimately, recognizing the hidden role of OVOCs may be key to resolving the long-standing challenge of persistent surface ozone pollution in both developing and industrialized regions.

###

References

DOI

10.1016/j.ese.2026.100659

Original Source URL

https://doi.org/10.1016/j.ese.2026.100659

Funding information

This research was funded by the Hong Kong Research Grants Council via Theme-Based Research Scheme (T24-504/17-N) and General Research Fund (HKBU 15219621), the National Natural Science Foundation of China (42325504), the National Key Research and Development Program of China (2023YFC3706205), and the Shenzhen Science and Technology Program (JCYJ20220818100611024).

About Environmental Science and Ecotechnology

Environmental Science and Ecotechnology (ISSN 2666-4984) is an international, peer-reviewed, and open-access journal published by Elsevier. The journal publishes significant views and research across the full spectrum of ecology and environmental sciences, such as climate change, sustainability, biodiversity conservation, environment & health, green catalysis/processing for pollution control, and AI-driven environmental engineering. The latest impact factor of ESE is 14.3, according to the Journal Citation ReportsTM 2024.




UAlbany Meteorologists Available to Discuss Major Winter Storm Set to Hit U.S. | Newswise


Newswise — ALBANY, N.Y. (Jan. 22, 2026) — A major winter storm is expected to bring dangerously low temperatures and heavy snow through the weekend across a nearly 2,000-mile stretch of the United States, from the southern Plains to the Northeast. 

The storm is expected to develop on Friday, creating a hazardous mix of heavy snow and ice that could cause power outages for millions of Americans and make roads impassable. 

Allison Finch, lead meteorologist at the University at Albany’s State Weather Risk Communication Center, is closely monitoring the storm. She says snow, freezing rain, sleet, gusty winds and dangerously cold temperatures are all among the hazards expected. 

“From Texas to the Mid-Atlantic states, this storm looks to bring snow and a widespread swath of ice,” Finch said. “Ice is a very impactful hazard to begin with, but when it occurs in areas that doesn’t typically experience it as often, impacts can be exacerbated. Among the impacts is the likelihood of power outages. Anyone who loses a heat source may be impacted since temperatures are not expected to rebound quickly after the storm.” 

Finch points to two main factors fueling the storm — cold air from Canada and moisture moving up from the Gulf of Mexico. 

“A powerful Arctic air mass is sweeping across the U.S. late this week and into next week, bringing temperatures well below average,” Finch said. “At the same time, a large plume of moisture originating from warm ocean waters is being drawn into that Arctic air. When that moisture gets wrapped into the cold air mass, it provides the fuel needed for a widespread and potentially high-impact winter storm.”  

Launched in 2023, the State Weather Risk Communication Center is a first-of-its-kind partnership between UAlbany and the New York State Division of Homeland Security and Emergency Services that leverages the University’s expertise in atmospheric sciences to help emergency managers prepare for and respond to severe weather events. 

The Center provides rapid, tailored, real-time weather information and custom weather services to New York state and local public-sector partners.  

Finch, along with other meteorologists at the State Weather Risk Communication Center, are available to share their insights on this weekend’s winter storm via phone or live/recorded interviews.    

For the latest conditions in New York, follow the NYS Mesonet, a statewide weather observation network operated by UAlbany, which provides real-time data from monitoring sites across the state. 

 

About the University at Albany: 

 

The University at Albany is one of the most diverse public research institutions in the nation and a national leader in educational equity and social mobility. As a Carnegie-classified R1 institution, UAlbany faculty and students are advancing our understanding of the world in fields such as artificial intelligence, atmospheric and environmental sciences, business, education, public health, social sciences, criminal justice, humanities, emergency preparedness, engineering, public administration, and social welfare. Our courses are taught by an accomplished roster of faculty experts with student success at the center of everything we do. Through our parallel commitments to academic excellence, scientific discovery and service to community, UAlbany molds bright, curious and engaged leaders and launches great careers.  

###  




Accurately Predicting Arctic Sea Ice in Real Time | Newswise


Newswise — WASHINGTON, Feb. 3, 2026 — Arctic sea ice has large effects on the global climate. By cooling the planet, Arctic ice impacts ocean circulation, atmospheric patterns, and extreme weather conditions, even outside the Arctic region. However, climate change has led to its rapid decline, and being able to make real-time predictions of sea ice extent (SIE) — the area of water with a minimum concentration of sea ice — has become crucial for monitoring sea ice health.

In Chaos, by AIP Publishing, researchers from the United States and the United Kingdom reported accurate, real-time predictions of SIE in Arctic regions. Sea ice coverage is at its minimum in September, making the month a critical indicator of sea ice health and the primary target of the work.

“Indigenous Arctic communities depend on the hunting of species like polar bears, seals, and walruses, for which sea ice provides essential habitat,” said author Dimitri Kondrashov. “There are other economic activities, such as gas and oil drilling, fishing, and tourism, where advance knowledge of accurate ice conditions reduces risks and costs.”

The researchers’ approach treats sea ice evolution as a set of atmospheric and oceanic factors that oscillate at different rates — for example, climate memory at long timescales, annual seasonal cycles, and quickly changing weather — while still interacting with one another. They used the National Snow and Ice Data Center’s average daily SIE measurements from 1978 onward to find the relationships between these factors that affect sea ice.

Testing their prediction method live in September 2024, and retroactively for Septembers of past years, the group confirmed their technique is generally accurate and can capture effects from subseasonal to seasonal timescales. They predicted SIE ranging from one to four months out and found their predictions outperformed other models.

In general, long-term climate forecasts tend to be easier and more reliable than short-term predictions. However, by incorporating regional data into their model, the researchers were able to improve short-term ice and weather estimates.

“The model includes several large Arctic regions composing [the] pan-Arctic,” said Kondrashov. “Despite large differences in sea ice conditions from year to year in different regions, the model can pick it up reasonably accurately.”

The group plans to improve their model by including additional oceanic and atmospheric variables, such as air temperature and sea level pressure. These variables can cause fast changes and short-term fluctuations that are not currently reflected in the model, and the researchers hope these additions will further enhance the predictability of summertime Arctic sea ice.

###

The article “Accurate and robust real-time prediction of September Arctic sea ice” is authored by Dimitri Kondrashov, Ivan Sudakow, Valerie N. Livina, and QingPing Yang. It will appear in Chaos on Feb. 3, 2026 (DOI: 10.1063/5.0295634). After that date, it can be accessed at https://doi.org/10.1063/5.0295634.

ABOUT THE JOURNAL

Chaos is devoted to increasing the understanding of nonlinear phenomena in all areas of science and engineering and describing their manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines. See https://pubs.aip.org/aip/cha.

###