Produce Hydrogen and Oxygen Simultaneously From a Single Atom! Achieve Carbon Neutrality with an ‘All-in-One’ Single-Atom Water Electrolysis Catalyst | Newswise


Newswise — Green hydrogen production technology, which utilizes renewable energy to produce eco-friendly hydrogen without carbon emissions, is gaining attention as a core technology for addressing global warming. Green hydrogen is produced through electrolysis, a process that separates hydrogen and oxygen by applying electrical energy to water, requiring low-cost, high-efficiency, high-performance catalysts.

The Korea Institute of Science and Technology (KIST, President Oh Sang-rok) announced that a research team led by Dr. Na Jongbeom and Dr. Kim Jong Min from the Center for Extreme Materials Research has developed next-generation water electrolysis catalyst technology. This technology integrates a single-atom ‘All-in-one’ catalyst precisely controlled down to the atomic level with binder-free electrode technology. A key feature of this technology is its ability to stably perform both hydrogen evolution and oxygen evolution reactions simultaneously on a single electrode.

Existing electrolysis systems had limitations requiring different catalysts and electrode structures for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), necessitating the use of large quantities of expensive precious metals. Additionally, the binder used to fix the catalyst to the electrode posed problems, including reduced electrical conductivity and catalyst detachment during long-term operation.

KIST researchers utilized atomic-level precision control technology to uniformly disperse iridium (Ir) atoms across the surface of a manganese (Mn)-nickel (Ni)-based layered double hydroxide (LDH) support incorporating phytic acid. This strategy replaced the conventional use of bulk iridium precious metal. By maximizing the number of active sites for water-splitting reactions with minimal iridium, this approach is analogous to evenly spreading fine grains of sand over a large surface rather than relying on a single large rock.

In particular, the iridium single atom acts as a direct active site for the hydrogen evolution reaction through its strong interaction with the support, while simultaneously enhancing the catalytic performance of the nickel-based active site where the oxygen evolution reaction occurs. Thus, a single-atom catalyst has realized bifunctional catalytic characteristics, exhibiting suitable reactivity for both reactions. Furthermore, the research team applied a method of directly growing the catalyst on the electrode surface, achieving an electrode structure that does not require a separate binder. This significantly improved electrical conductivity and ensured excellent durability even during long-term operation.

This technology significantly reduces precious metal usage to within 1.5% compared to existing precious metal catalysts while achieving outstanding performance in both hydrogen and oxygen evolution reactions. In addition, it demonstrates high stability with minimal performance degradation even after continuous operation for over 300 hours in an anion exchange membrane (AEM) water electrolysis system. This research outcome demonstrates the technical feasibility of simultaneously enhancing the economic viability and durability of electrolysis systems by minimizing precious metal usage and simplifying electrode structures. It is expected to significantly contribute to the commercialization of green hydrogen production and the reduction of hydrogen production costs in the future.

Dr. Na Jongbeom of KIST stated, “This work is highly significant as it resolves the two essential reactions for hydrogen production using a single catalyst while reducing precious metal consumption.” He added, “This technology will accelerate the commercialization of water electrolysis devices and provide substantial support for expanding hydrogen energy.”

###

KIST was established in 1966 as the first government-funded research institute in Korea. KIST now strives to solve national and social challenges and secure growth engines through leading and innovative research. For more information, please visit KIST’s website at https://kist.re.kr//eng/index.do

This research was conducted with support from the Ministry of Science and ICT (Minister Bae Kyung-hoon) through KIST’s Institutional Program and Excellent New Researcher Program (RS-2024-00350423), the DACU Core Technology Development Project (RS-2023-00259920), and the Korea-US-Japan International Joint Research Project (Global-24-003). The research results were published in the latest issue of the international journal Advanced Energy Materials (IF: 26.0, JCR (%): 2.5%).




How to Design Fatigue Resistance, Make Metal Alloys More Durable, Sustainable | Newswise


Newswise — Illinois Grainger engineers have identified a fundamental deformation mechanism that can be leveraged to greatly enhance the fatigue properties of metals, opening the door to a new strategy for designing fatigue-resistant alloys.

Metal alloys crack and fail through a mechanism called “fatigue” when repeatedly loaded and strained. While it is well known how to design alloys to withstand static loads and pressures, it is very difficult to design resistance to fatigue because it is difficult to predict how the underlying cause manifests at the atomic scale.

Researchers in The Grainger College of Engineering at the University of Illinois Urbana-Champaign have demonstrated that fatigue resistance can be greatly enhanced by controlling how metal plasticity, or irreversible deformation, localizes at small scales. It represents a new design strategy for engineering metallic alloys that are resistant to fatigue by leveraging unique deformation processes at the atomic scale.

“Transportation, space and energy all create environments where there is risk for fatigue, presenting a challenge to both safety and sustainability,” said materials science and engineering professor and project lead Jean-Charles Stinville. “Structural applications that involve high temperatures or radiation need materials resistant to fatigue, and our work shows how to design metal alloys that achieve this.”

These results were recently published in the journal Nature Communications.

Fatigue is governed by how a material accommodates plastic deformation, the irreversible rearrangement of its internal structure under repeated loading. As a material is cyclically loaded and unloaded, localized plastic deformation accumulates eventually leading to crack initiation. Paradoxically, materials engineered to withstand very high static loads often suffer from reduced fatigue resistance because their microstructure promotes strong localization of plastic deformation, accelerating damage accumulation.

“In alloys, plastic deformation tends to localize into discrete regions, which ultimately become preferential sites for fatigue crack initiation,” Stinville explained. “Because this localization emerges from complex microstructural and deformation processes interactions, it is difficult to predict where and how it will occur, making it challenging to account for during the engineering design stage.” 

Stinville and his collaborators examined whether fatigue resistance can be drastically improved by designing alloys in which plastic deformation is engineered to remain small and uniformly distributed rather than intense and highly localized.

“It makes sense intuitively, that spreading out the plastic deformation homogeneously makes reduces the impact of localized deformation, but experimentally demonstrating it was another matter,” Stinville said. “It required new technology capable of scanning large regions at very high resolution combined with theoretical support from density functional theory and ab-initio molecular dynamics simulations.”

The researchers used high-throughput automated high-resolution digital image correlation, a technique developed in Stinville’s laboratory, to map plastic deformation with unprecedented spatial resolution across large material regions. Unlike conventional methods, which must trade field of view for resolution, this approach captures fine-scale deformation over wide areas. These measurements revealed a delocalized mode of plastic deformation involving deformation processes called “dynamic plastic delocalization.” Mechanical testing showed to be directly associated with greatly enhanced fatigue resistance.

To make sense of the observed structural features, Stinville’s group collaborated with mechanical science and engineering researchers within the group of mechanical science and engineering professor Huseyin Sehitoglu, an expert in the theory and modeling of metal deformation. Computational modeling clarified the roles of chemistry and ordering on the observed delocalized plasticity in the tested materials.

Now that it has been confirmed that metal chemistry and structure can be used to generate homogeneous plasticity during deformation and therefore greatly improved fatigue resistance, the next step is exploring the potential of this result in material design strategies.

“Now that the fundamental mechanism has been identified, we can design new alloys chemistry that activates it to produce fatigue resistant alloys,” Stinville said. 

This study’s other contributors are Dhruv Anjaria, Mathieu Calvat, Shuchi Sanandiya, and Daegun You of Illinois Grainger Engineering; Milan Heczko of the Czech Academy of Arts and Sciences; and Maik Rajkowski, Aditya Srinivasan Tirunilai and Guillaume Laplanche of Ruhr Universität Bochum.




WHOI’s Alan Seltzer earns prestigious F.G. Houtermans Award | Newswise


Newswise — Woods Hole, Mass. (February 4, 2026) – Alan Seltzer, an affiliated scientist at Woods Hole Oceanographic Institution (WHOI), assistant professor at University College Dublin, and former WHOI postdoctoral scholar, has been named the 2026 recipient of the F.G. Houtermans Award by the European Association of Geochemistry (EAG). The award is among the highest international honors recognizing early-career scientists in geochemistry.

Seltzer is being recognized for pioneering the use of dissolved gas isotopes to quantify physical and biogeochemical processes across the Earth system, including exploring the sensitivity of groundwater systems to climate and the dynamics of atmosphere-ocean gas exchange. Much of the work cited by the award committee was conducted at WHOI, where Seltzer was a postdoctoral scholar from 2019 to 2021 and later a member of the scientific staff in the Marine Chemistry and Geochemistry Department, where he established a gas isotope tracer laboratory and developed several new analytical techniques.

His research helped open new pathways for using noble gas and nitrogen isotopes to investigate groundwater, seawater, air, and volcanic gases. Seltzer also helped extend high-precision noble gas isotope techniques to volcanic systems in collaboration with WHOI associate scientist Peter Barry to better understand the origins and transport pathways of volatiles from Earth’s deep interior. He also expanded oceanic applications of noble gas tracers for air-sea interaction and glacial meltwater circulation with WHOI scientists Bill Jenkins and Roo Nicholson, and more recently advanced high-precision tools for quantifying nitrogen cycling in aquatic environments in collaboration with MIT-WHOI Joint Program student Katelyn McPaul and WHOI associate scientist Scott Wankel.

“It is an honor to be recognized with the F.G. Houtermans Award,” Seltzer said. “WHOI has a special culture in which collaboration and high-risk science are celebrated, and without the encouragement and freedom at WHOI to take risks, push analytical limits, and fail a lot along the way, much of my work would not have been possible. I’m deeply grateful for all the support I’ve received from the WHOI community over my career so far.”

Seltzer’s selection continues a notable streak for WHOI’s Marine Chemistry and Geochemistry Department. Former WHOI postdoctoral scholar David Bekaert received the Houtermans Award in 2025, marking back-to-back years in which the honor has gone to WHOI-trained scientists—a rare distinction that highlights the strength and impact of the Institution’s postdoctoral program.

The 2026 F.G. Houtermans Award will be formally presented at the Goldschmidt Conference in July.

About Woods Hole Oceanographic Institution

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Massachusetts, dedicated to marine research, engineering, and higher education. Established in 1930, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate an understanding of the ocean’s role in the changing global environment. Top scientists, engineers, and students collaborate on more than 800 concurrent projects worldwide—both above and below the waves—pushing the boundaries of knowledge and possibility. 




Battery Game Changer: AI Identifies Key Conditions for All-Solid-State Battery Electrolyte Materials | Newswise


Newswise — Lithium-ion batteries serve as the core energy storage devices in various industries and everyday products, including smartphones, electric vehicles, and ESS (energy storage systems). However, conventional lithium-ion batteries use liquid electrolytes, posing a risk of fire or explosion when subjected to external impact or overheating. Recent electric vehicle fire incidents have heightened concerns about their safety. As an alternative to overcome these limitations, ‘all-solid-state batteries’-which use non-flammable solid materials as electrolytes-are gaining attention as next-generation battery technology.

However, amorphous solid electrolytes-the core material for all-solid-state batteries-have faced limitations in analyzing lithium-ion transport mechanisms due to the irregularity of their internal structure. Consequently, performance improvements have been achieved empirically by altering electrolyte composition or compression conditions, making it difficult to systematically explain the causes of performance differences.

A research team led by Dr. Byungju, Lee at the Computational Science Research Center of the Korea Institute of Science and Technology (KIST, President Sang-Rok Oh) has identified key factors governing lithium ion movement in amorphous solid electrolytes through AI-based atomic simulations. The team analyzed lithium-ion movement by distinguishing it into ‘ease of movement between sites’ and ‘connectivity of movement paths’. They confirmed that overall performance is more significantly influenced by the difficulty of ions moving from one site to the next than by path connectivity.

In fact, while ion conductivity performance varied by up to fivefold depending on lithium ion mobility, the effect of pathway connectivity was limited to approximately a twofold difference. This provides a quantitative basis for interpreting performance variations that were previously difficult to explain due to the amorphous structure. Furthermore, the research team identified specific structural conditions that enhance lithium ion mobility. The higher the proportion of structures where four sulfur atoms surrounded a lithium ion, the faster the ion migration became. Optimal performance was achieved when the size of the internal void space fell within an appropriate range. Notably, excessively large voids actually hindered ion migration and degraded performance. This finding overturns the conventional wisdom that ‘lower density leads to higher conductivity’.

The results of this study can be directly applied to the design and manufacturing process of solid electrolytes for all-solid-state batteries. Simply controlling the internal structure by adjusting the electrolyte composition ratio or compression/molding conditions can improve ionic conductivity performance without requiring additional material changes, making it highly applicable in industrial settings. Furthermore, the analytical method proposed in this study can be extended to the development of various solid electrolyte materials. By pre-selecting high-performance candidate materials, it can dramatically enhance performance prediction and accelerate material development speed. This is expected to advance the commercialization of all-solid-state batteries in fields where safety and energy density are critical, such as electric vehicles and energy storage devices.

Dr. Byungju, Lee of KIST stated, “This research is significant in that it clearly identifies the key factors determining the performance of amorphous solid electrolytes.” He added, “As it presents design criteria enabling systematic improvement of material performance, we expect it to contribute to accelerating the commercialization of all-solid-state batteries.”

###

KIST was established in 1966 as the first government-funded research institute in Korea. KIST now strives to solve national and social challenges and secure growth engines through leading and innovative research. For more information, please visit KIST’s website at https://kist.re.kr//eng/index.do

This research was conducted as part of KIST’s major projects and the Materials Global Young Connect Project (RS-2024-00407995), supported by the Ministry of Science and ICT (Minister Bae Kyung-hoon). The research findings were published in the latest issue of the international journal Advanced Energy Materials (IF 26.0, JCR field 2.5%).




KRICT Develops Microfluidic Chip for One-Step Detection of PFAS and Other Pollutants | Newswise


Newswise — Environmental pollutant analysis typically requires complex sample pretreatment steps such as filtration, separation, and preconcentration. When solid materials such as sand, soil, or food residues are present in water samples, analytical accuracy often decreases, and filtration can unintentionally remove trace-level target pollutants along with the solids.

To address this challenge, a joint research team led by Dr. Ju Hyeon Kim at the Korea Research Institute of Chemical Technology (KRICT), in collaboration with Professor Jae Bem You’s group at Chungnam National University, has developed a microfluidic-based analytical device that enables direct extraction and analysis of pollutants from solid-containing samples without any pretreatment.

Water, food, and environmental samples encountered in daily life may contain trace amounts of hazardous contaminants that are invisible to the naked eye. Accurate detection requires selective extraction and concentration of target analytes, a process traditionally achieved using liquid–liquid extraction (LLE). However, conventional LLE requires large volumes of solvents and is difficult to automate. Although liquid–liquid microextraction (LLME) has been introduced to overcome these limitations, its practical application has remained limited because samples containing solid particles still require a filtration step prior to extraction.

Existing analytical approaches typically follow a multistep workflow—solid removal, extraction, and analysis—which increases time and cost while reducing analytical reliability. These limitations pose significant challenges in fields closely related to public health, including environmental monitoring, drinking water safety, and pharmaceutical residue analysis.

The research team overcame these issues by designing a trap-based microfluidic device that confines a small volume of extractant droplet inside a microchamber while allowing the sample solution to flow continuously through an adjacent microchannel. This configuration enables rapid and selective mass transfer of target analytes into the extractant, while solid particles pass through the channel without interference. After extraction, the extractant droplet can be retrieved for downstream analysis.

Using this device, the researchers successfully detected perfluorooctanoic acid (PFOA), a representative per- and polyfluoroalkyl substance (PFAS) increasingly regulated due to environmental and health concerns, as well as carbamazepine (CBZ), an anticonvulsant pharmaceutical compound. Notably, CBZ was extracted directly from sand-containing slurry samples without filtration. PFOA signals were detected within five minutes, and CBZ extracted from slurry samples was clearly identified using high-performance liquid chromatography (HPLC).

The results demonstrate that the proposed microfluidic platform significantly reduces analytical steps while maintaining high reliability, highlighting its potential as a compact and automatable solution for environmental pollution monitoring, food safety inspection, and pharmaceutical and bioanalytical applications.

Dr. Kim noted that “integrating multiple pretreatment steps into a single process offers substantial advantages for on-site analysis and automated systems,” while KRICT President Young-Kuk Lee emphasized that “this technology can enhance the reliability of environmental and food safety analyses that directly impact public health.”

The study was published as a cover article in ACS Sensors (Impact Factor: 9.1; top 3.2% in JCR Analytical Chemistry) in December 2025. Dr. Ju Hyeon Kim (KRICT) and Professor Jae Bem You (Chungnam National University) served as corresponding authors, with Sung Wook Choi as the first author.

###

KRICT is a non-profit research institute funded by the Korean government. Since its foundation in 1976, KRICT has played a leading role in advancing national chemical technologies in the fields of chemistry, material science, environmental science, and chemical engineering. Now, KRICT is moving forward to become a globally leading research institute tackling the most challenging issues in the field of Chemistry and Engineering and will continue to fulfill its role in developing chemical technologies that benefit the entire world and contribute to maintaining a healthy planet. More detailed information on KRICT can be found at https://www.krict.re.kr/eng/

The research was supported by the KRICT Core Research Program, the National Research Foundation of Korea, and the Korea–Switzerland Innovation Program.




Untangling Signals From Subatomic Particles


Newswise — Each year, the Physical Sciences and Engineering (PSE) directorate at the U.S. Department of Energy’s (DOE) Argonne National Laboratory recognizes exceptional early-career researchers breaking into their fields with the PSE Early Investigator Named Awards. In 2025, the lab announced that six awardees would be receiving support in the form of funding and mentorship to conduct groundbreaking research aligned with Argonne’s strategic mission.

One member of the 2025 cohort is Maria Żurek, an assistant physicist in Argonne’s Physics (PHY) division, who studies the fundamental structure of protons and neutrons using the Continuous Electron Beam Accelerator Facility (CEBAF) at the DOE’s Thomas Jefferson National Accelerator Facility. For the PSE Early Investigator Named Award, Żurek will work under the guidance of Sylvester Joosten, interim leader of the Medium Energy group at Argonne, on a proposal titled, ​“Seeing the Unseen: Precision Calorimetry for 3D Nucleon Imaging.” In particle physics experiments, calorimetry refers to detection and analysis methods used to calculate particle energy.

“The national lab environment allows me to lead large projects and collaborate with fantastic scientists and engineers across divisions and institutions.” — Maria Żurek, Argonne assistant physicist

Here, Żurek discusses her research and other work she supports at Argonne.

Q: What role do you play at the lab?
A: I am an experimental nuclear physicist in the Physics division’s Medium Energy group, and I am working to understand the fundamental structure of the visible matter that makes up our world.

Q: What initiatives or projects are you most excited about being involved in at Argonne?
A: The national lab environment allows me to lead large projects and collaborate with fantastic scientists and engineers across divisions and institutions. I have the opportunity to work with talented postdocs on uncovering the inner workings of protons and neutrons using data from the CLAS12 experiment at Jefferson Lab, and I co-lead the development of electromagnetic calorimetry for the ePIC detector at the future Electron-Ion Collider (EIC) at the DOE’s Brookhaven National Laboratory. I am a team player, and doing great science with great people is the best job in the world.

Q: Can you talk a bit about the research you’re conducting for your proposal for which you received the 2025 PSE Early Investigator Named Award?
A: My PSE Early Investigator Named Award project tackles a hard problem: improving calorimetry for hadrons — protons, neutrons and other similar subatomic particles — in the medium-energy range typical of experiments at Jefferson Lab. Neutral particles, like neutrons, and another subatomic particle called muons are notoriously difficult to measure in this range. I will run preliminary simulations to test a practical dual-readout approach that separates light generated by different types of subatomic interactions, with the aim of getting cleaner, more precise energy and position measurements. The goal is to open new opportunities for 3D studies of proton and neutron structure and to provide evidence that can guide the next generation of detector designs.

Q: What do you like most about your job?
A: The people I work with, the diversity of problems I get to solve and the fact that I am always learning something new.

Q: How does your work support the lab’s mission? 
A: In my work I analyze data from world-class DOE user facilities, using measurements to sharpen our most fundamental understanding of how the universe is put together. I design and test modern detector technologies that let us see proton and neutron structure with greater clarity. This work uses Argonne’s strengths in hands-on experimentation and computation, and it delivers practical capability, validated hardware, documented procedures and reconstruction tools, for national research facilities today and for the EIC tomorrow. I work with engineers, scientists and trainees across Argonne to get from concept to instrument to reliable results. That is my piece of the mission.

Q: What do you enjoy doing outside of work?
A: I love hunting for hole-in-the-wall restaurants in Chicago’s neighborhoods and suburbs with my husband, and I never tire of admiring the city’s architecture, always walking with my head up. I love going to ballet, opera, musicals, sports games and concerts. A year ago, I started aerial gymnastics, and I even appreciate the bruises because they mean I am getting better. I enjoy leaf peeping in local parks and running our annual ​“fat squirrel contest” with friends. As someone who moved here, I still carry a newcomer’s curiosity — and ope! — I’m always ready to explore one more corner of American and Midwestern culture.

Q: What other sorts of career or professional development opportunities has Argonne provided?
A: I’ve gotten a lot from Argonne’s Mentorship Program, on both sides. As a mentee, the conversations with my mentors pushed me to set clear goals and get honest feedback; they also gave me a better view of how the lab works across divisions. As a mentor, I’ve learned to give useful feedback and to connect postdocs with the right people and resources. It’s simple, but it works because it creates time for focused conversations. Beyond mentoring, I’ve benefited from proposal workshops, science communication sessions and serving on several internal review committees.

Q: What encouraged you to get involved in the scientific discipline you are in?
A: I have always been drawn to big questions. In school I loved math, physics and chemistry, but I also loved literature for the way a good story pulls you in. A great high school physics teacher showed me that science can do the same thing: It tells a story about how the world works. I thought I might become a teacher, but during university I spent undergraduate internships at Fermilab (another DOE national laboratory), where I saw how national labs ​“zoom in” on particles to understand the building blocks of matter. That experience shifted my path. I wanted to be part of that discovery process.

Since then, I have followed the thread from curiosity to experiment — first, learning how to measure, then learning how to ask better questions, until it became a career in nuclear physics.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology by conducting leading-edge basic and applied research in virtually every scientific discipline. Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://​ener​gy​.gov/​s​c​ience.




Infrared Spectroscopy Sheds New Light on the Future of Protonic Ceramic Cells | Newswise


Newswise — With the global shift toward renewable energy, solid oxide–based electrochemical devices have become essential for hydrogen production, energy storage, and fuel-to-electricity conversion. Traditional oxygen-ion–conducting cells require high operating temperatures, creating cost, durability, and material compatibility challenges. Protonic ceramic cells (PCCs) offer an alternative, operating efficiently at 300–600 °C and allowing the use of cheaper components, improved thermal cycling, and enhanced stability. Despite rapid progress in materials engineering, the fundamental mechanisms governing hydration, proton conduction, and electrode reactions remain insufficiently understood. These gaps hinder rational catalyst design and slow the translation of new materials into practical PCC devices. Based on these challenges, there is a critical need to deeply investigate proton behavior, interfacial chemistry, and catalytic mechanisms.

Researchers from Idaho National Laboratory and collaborating universities published (DOI: 10.1016/j.esci.2025.100437) a comprehensive review on August 2025, in eScience, detailing how diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is transforming protonic ceramic cell research. The article summarizes recent breakthroughs in applying DRIFTS to oxygen electrodes, proton-conducting electrolytes, and hydrogen electrodes under realistic operating conditions. By capturing surface intermediates and hydration signatures, the review highlights DRIFTS as an essential technique for understanding reaction pathways, improving proton uptake, and guiding next-generation materials design for high-performance PCC systems. This platform was recently reported in a research article by the same group in Energy Environmental Science, providing the substantial evidence on how it is powerful in electrochemical system at elevated temperatures, specifically for PCC.

The review outlines how DRIFTS enables direct observation of surface species and dynamic reactions across PCC components. For oxygen electrodes, DRIFTS detects hydroxyl stretching bands associated with proton uptake, providing insights into triple-conducting materials such as PrNi₀.₅Co₀.₅O₃–δ, PrBaCo₂O₅+δ, and high-entropy perovskites. Doping-induced enhancements—such as Zn-stabilized hydration sites or Cs-driven oxygen vacancy formation—are revealed through stronger –OH peaks and temperature-dependent hydration behavior. DRIFTS also verifies steam-induced structural transformations, including monoclinic-to-cubic transitions and the emergence of multi-phase composites that improve catalytic performance.

For protonic electrolytes, DRIFTS distinguishes Zr–OH–Zr and Zr–OH–X environments, enabling researchers to identify proton trapping, dehydration kinetics, and dopant-dependent hydrogen-bonding effects in materials like Sc- and Y-doped BaZrO₃. The technique further detects carbonate residues that impair sintering, guiding optimized fabrication routes.

In catalytic applications, DRIFTS captures intermediates during CO₂ hydrogenation, methane reforming, and chemical-fuel co-conversion, identifying formates, carbonates, and CO adsorption species crucial to mechanistic understanding. Emerging operando DRIFTS configurations with applied voltage demonstrate the movement of surface protons during real electrochemical reactions, validating proton migration and reaction coupling at electrode interfaces. Collectively, the review shows how DRIFTS bridges fundamental chemistry with practical PCC engineering.

According to the authors, DRIFTS provides a uniquely powerful lens for understanding how PCC materials behave under realistic conditions. They emphasize that the ability to monitor hydration, proton uptake, and catalytic intermediates in real time offers insights unavailable from traditional characterization tools. The authors note that integrating DRIFTS with complementary methods—such as synchrotron-based IR, X-ray spectroscopy, and computational modeling—will further expand its impact. They conclude that establishing operando DRIFTS systems capable of applying electrical load represents a critical next step for unraveling the complex, surface-driven processes that dictate PCC performance.

The review underscores that advancing DRIFTS techniques will accelerate the rational design of PCC materials for clean-energy technologies. Improved understanding of hydration behavior and proton migration can guide the development of durable oxygen electrodes, CO₂-tolerant electrolytes, and carbon-resistant hydrogen electrodes. Insights into reaction intermediates also support catalyst optimization for hydrogen production, CO₂ reduction, methane reforming, and value-added chemical synthesis. As energy systems evolve toward efficiency and sustainability, DRIFTS-enabled mechanistic knowledge will help bridge laboratory discoveries and scalable PCC devices. Ultimately, the authors note that expanding operando DRIFTS capabilities will be essential for building the next generation of robust, high-performance ceramic energy systems.

###

References

DOI

10.1016/j.esci.2025.100437

Original Source URL

https://doi.org/10.1016/j.esci.2025.100437

Funding information

This work is supported by the HydroGEN Advanced Water Splitting Materials Consortium, established as part of the Energy Materials Network under the U.S. Department of Energy (USDOE); the Office of Energy Efficiency and Renewable Energy (EERE); and the Hydrogen and Fuel Cell Technologies Office (HFTO), under DOE Idaho Operations Office, under contract no. DE-AC07-05ID14517.

About eScience

eScience – a Diamond Open Access journal cooperated with KeAi and published online at ScienceDirect. eScience is founded by Nankai University (China) in 2021 and aims to publish high quality academic papers on the latest and finest scientific and technological research in interdisciplinary fields related to energy, electrochemistry, electronics, and environment. eScience provides insights, innovation and imagination for these fields by built consecutive discovery and invention. Now eScience has been indexed by SCIE, CAS, Scopus and DOAJ. Its impact factor is 36.6, which is ranked first in the field of electrochemistry.




How Olympic Athletes Use Science to Win, According to an Expert | Newswise


BYLINE: Melody Warnick

Newswise — Racing through the air at Olympic speeds, athletes at the Winter Olympics in Milan will need more than strength and skill—they’ll need science. In sports like ski jumping, skeleton, and speed skating, aerodynamics can make the difference between getting the gold or going home empty-handed.

And athletes know it. A scandal erupted at the Nordic World Ski Championships recently when Norwegian team coaches illegally enlarged ski jumpers’ suits to enhance aerodynamics, in the hopes the skiers would fly a few extra meters. One former champion called it “doping, just with a different needle.”

Virginia Tech aerodynamics expert Chris Roy explained what athletes are doing to take advantage of the science of aerodynamics. 

Why did Norwegian coaches alter ski jumpers’ suits?

“When trying to fly without propulsion, it comes down to maximizing your lift while minimizing your drag,” Roy said. “One way to do that is by increasing your surface area, which is what the Norwegian coaches were trying to do.”

But that’s not the only way, Roy said. “You can also get higher lift by curving your shape, called camber, or by changing your angle relative to the oncoming wind. Increasing camber or angle both increase lift, but there’s a limit. Too much camber or angle can lead to stall, where lift drops dramatically and drag increases. You don’t want to hit stall during a ski jump.”

For Olympic athletes, how can aerodynamics shave off time?

“Shape is one of the key aspects of aerodynamics,” Roy said. “Low drag requires an aerodynamic shape.”

“That’s why ski jumpers form a V with their skis, turning their body into efficient lift-generating surfaces. A streamlined wing shape can have 10 times less drag than a circular shape of the same thickness,” Roy said.

Aerodynamics shows up in speed skating too, when skaters “draft” behind others. “By skating behind others, you can drastically reduce your aerodynamic drag, in some cases by up to 40 percent, allowing the skaters in the back to significantly reduce their effort.”

How do athletes use engineering research to train for the Winter Olympics? 

“Lots of Winter Olympic sports use wind tunnel testing to improve aerodynamics, equipment, and apparel, including ski jumping, speed skating, bobsled, skeleton, and luge,” Roy explained. “These sports also use computational fluid dynamics to model these effects on the computer.”  

About Roy

Chris Roy is a professor in the Kevin T. Crofton Department of Aerospace and Ocean Engineering at Virginia Tech, where he’s affiliated with the Center for Research and Engineering in Aero/Hydrodynamic Technologies (CREATe). His research expertise centers around computational fluid dynamics, aerodynamics, and the reliability of computer simulations. Read more about him here.

Schedule an interview

To schedule an interview with Chris Roy, contact Mike Allen at mike.allen@vt.edu or 540-400-1700. 




HKIAS Annual General Meeting 2025: Commemorating a Decade of Excellence and Embracing Future Endeavors | Newswise


Newswise — The Hong Kong Institute for Advanced Study (HKIAS) hosted its Annual General Meeting (AGM) on October 15, 2025, gathering Senior Fellows from across the globe to mark the Institute’s 10th anniversary and engage in discussions centered on strategic advancements in research and international collaboration. Under the leadership of Chairman Professor Serge Haroche, the meeting commenced with a heart-warming welcome to the new appointed HKIAS Senior Fellows: Professor Françoise Combes, Professor Étienne Ghys, Professor Dame Madeleine Atkins, Professor Alessio Figalli and Professor Sylvie Méléard. The Executive Director, Professor Shuk Han Cheng, presented a comprehensive review of the recent initiatives undertaken by City University of Hong Kong (CityUHK) and HKIAS, highlighting current news, activities, collaborative interactions with faculty members between CityUHK and the home institutions of our Senior Fellows and the significant achievements of Senior Fellows to underscore a decade of excellence.

As a key component of the HKIAS 10th anniversary celebration activities, HKIAS organised a series of distinguished lectures and round table discussion. These activities, which showcased the cutting-edge research contributions of our Senior Fellows across multitude of disciplines, were supported partially by the Kwang Hua Educational Foundation. Their reception among students and faculty at CityUHK and various academic institutions across Hong Kong highlighted a profound interest and active engagement within the academic community. 

13 October: Professor Serge Haroche, an esteemed Nobel laureate in Physics, unveiled the intricacies of laser and quantum physics. On the same day, Professor Pierre-Louis Lions, the 1994 recipient of the Fields Medal, engaged the audience with a discourse on the intersection of mathematics and artificial intelligence (AI).

14 October: Professor George Fu Gao, a world-renowned virologist, delivered an insightful lecture on AI-empowered vaccine and antibody development. Additionally, Professor Mu-ming Poo, a distinguished figure in neuroscience and brain-inspired technology illuminated the audience on brain science and its implications for AI development.

15 October: Professor Dame Madeleine Atkins, President Emeritus of Lucy Cavendish College at the University of Cambridge, led a Round Table Discussion on Additional Models of Research Grant Funding, with Mr David Foster, Executive Director of the Croucher Foundation, as the online guest speaker.

Throughout the AGM week, interdisciplinary meetings and networking events were integral to fostering mentorship opportunities and collaboration among HKIAS Senior Fellows, CityU Faculty members, emerging researchers and students from various disciplines.

These events reaffirmed HKIAS’s unwavering commitment to fostering global collaboration and scientific excellence over the past decade. As the Institute celebrated its 10th anniversary, we look forward to organizing further initiatives that will enhance the international profile of the science and engineering community at CityUHK and explore new frontiers in research and collaboration.

For more details on the celebration events, please visit HKIAS past events.




Advancing education and discovery, Don and Linda Brodie endow WVU Eberly College deanship with $5M gift | Newswise


Newswise — West Virginia University empowered budding innovator Don Brodie to succeed by nurturing his passion for science and sense of curiosity. More than 50 years later, Brodie and his wife, Linda, are enriching academics, research and more to help future generations excel with a $5 million gift to strengthen leadership at the WVU Eberly College of Arts and Sciences.

The couple’s gift, made through their family foundation, establishes the Linda and Don Brodie Deanship at the WVU Eberly College. The associated endowment provides broad support to advance the mission of the University’s largest academic unit, which serves more than 5,000 students across over 60 undergraduate and graduate programs. 

“From literature and the humanities to mathematics, natural sciences, and social and behavioral sciences, the reach of the WVU Eberly College is wide,” WVU President Michael T. Benson said. “This gift is an investment in the future of the University’s largest College, which serves as a launch point for students of all interests and majors, and we thank Linda and Don Brodie for their incredible show of support for WVU.”

The Brodie gift comes as WVU seeks a new leader to guide the Eberly College. Longtime Dean Gregory Dunaway will conclude 10 years at the College’s helm on June 30, although he will remain a faculty member.

Greenwood Asher & Associates is leading the national search for the next Eberly College dean.

“Education is the most powerful investment we can make in the future,” Don and Linda Brodie said. “Our hope is that this deanship strengthens leadership, inspires discovery and opens doors for students to reach their full potential.”

Eberly programs span diverse disciplines including chemistry, which sparked Don’s scientific interest.

A native of Philadelphia, Brodie was drawn to WVU by affordable out-of-state tuition and initially chose chemistry because the registration line was short. He said he appreciates the education he received from his professors, who encouraged his innovative mind and laid the groundwork for a career rooted in chemistry. He graduated with his bachelor’s degree in 1969.

Brodie worked as a chemist and sales associate in the Philadelphia area through the 1970s. After he met and married Linda, they were inspired by their entrepreneurial parents to start a business.

With Linda’s support, Don partnered with his brother, Steve, to launch the Purolite Company from the couple’s basement in 1981. Over the next 40 years, the family-owned business grew into a global manufacturer of pharmaceutical and bioprocessing production products, industrial water treatment, chemical and refining for food processing, metals extraction, finishing and electroplating, and products used for nuclear power generation.

Brodie’s leadership as co-founder of Purolite contributed to the development of cost-effective ways to manufacture products for a cleaner environment, as well as groundbreaking innovations in medical treatment.

Linda Brodie played a pivotal role during Purolite’s formative years, applying her experience managing a law firm to lay the foundation for administration and finance operations. As the company grew, she continued to provide critical support, guidance and leadership.

The Brodies have amplified their impact in recent years through philanthropy. They established the Don and Linda Brodie Family Foundation to support the communities in which they live and create opportunities through education. Their giving is driven by their Jewish faith and shared values, anchored by strong beliefs in tradition, responsibility and integrity.

Their generous support for WVU includes two funds established within the Eberly College to support chemistry students and faculty pursuing research and discovery with the potential for commercialization.

“The Eberly College has been so fortunate to benefit from the generosity of Linda and Don Brodie,” Dunaway said. “They have made so many investments in the College to ensure opportunity and success for our students and faculty. This extraordinary gift reflects Don and Linda’s deep belief in Eberly and their desire to help the College thrive well into the future. It strengthens the foundation of the Eberly community to reach new heights in academic excellence, innovation and opportunities for those inside and outside of WVU.”

Don Brodie has also shared his time with WVU, serving as chair of the Eberly Advisory Committee and assisting with development efforts. He was inducted into the Academy of Distinguished Alumni in 2012 and selected last year to receive an honorary Doctor of Science degree from the Eberly College.

Don and Linda reside in Boca Raton, Florida. They are deeply devoted to their family, including their three adult children and five grandchildren.

The Brodie gift was made through the WVU Foundation, the nonprofit organization that receives and administers private donations on behalf of the University.