Six PNNL Researchers Win DOE Early Career Research Awards | Newswise


Newswise — RICHLAND, Wash.—The Department of Energy granted early career awards to six researchers at Pacific Northwest National Laboratory—a record number of recipients for PNNL in a single year. The prestigious award is designated for outstanding scientists early in their research careers. It delivers generous support—$2,750,000 for each of the 2025 recipients over a period of five years—allowing researchers to delve into questions that are key to DOE missions. 

“This is the first time six PNNL researchers have received Early Career Research Awards in the same year. This recognition is a testament to their promising research and the impact they stand to make in a variety of fields over the course of their careers,” said Deb Gracio, PNNL director.

PNNL recipients of the awards include chemist Richard Cox, chemical engineer Josh Elmore, computational scientist Hadi Dinpajooh, materials scientist Le Wang, and Earth scientists Avni Malhotra and Nick Ward. Their work focuses on basic science, ranging in focus from the chemistry of heavy elements like plutonium and uranium to plant and microbiological processes that could boost the development of the U.S. bioeconomy. The awards are given to scientists at DOE national laboratories, Office of Science user facilities and U.S. academic institutions. 

“The Department of Energy’s Office of Science is dedicated to supporting these promising investigators, and the Early Career Research Program provides an incredible opportunity,” said Harriet Kung, DOE’s Deputy Director of Science Programs for the Office of Science. “These awards allow them to pursue new ideas and harness the resources of the user facilities to increase the potential for breakthrough new discoveries.” 

For some, like Malhotra, the funding presents a rare opportunity to lead a new research program. “It’s an incredible opportunity to build a program from scratch that can lead to long-term discoveries and new research capabilities,” said Malhotra. Her work will shed light on biological processes that occur in soil near plant roots, which are difficult to capture and have long gone understudied. 

Similarly, Nick Ward’s research could uncover important details about a large, lingering question in the Earth science community: just how much methane and nitrous oxide could flow into or out of the world’s trees, and how might the scientific community better capture the process of forest-based trace gas exchange in their models?

For other recipients, like Wang, the funding makes possible new investigations within an established research team. Wang’s work flows out of the lab’s research in thin oxide films: materials that are an essential component of many modern electronics. Scientists like Wang grow these films in extremely thin layers, atom by atom, and study them to glean details about materials that can give rise to new, promising energy and information-processing technologies. 

“I’ve proposed to focus on a new material system known as high-entropy oxides,” said Wang. “Exploring how these multicomponent materials behave at the atomic level could bring about new functional properties,” he added. 

Dinpajooh’s work developing new AI methodologies could accelerate discovery in basic energy sciences by helping researchers better understand chemical and physical processes in electrolyte solutions. Electrolyte solutions are central to energy storage technologies, separation of critical materials, and many other applications. These AI-enabled approaches could improve prediction of key phenomena such as speciation, nucleation, and electron transfer—helping scientists tailor electrolyte performance and guide the design of next-generation materials and processes.

Other funded work, like Elmore’s research on bacterial bioproduction, could ultimately harness the power of microorganisms to produce valuable chemicals. But before those chemicals and other critical materials can be produced, researchers must work toward a predictive understanding of how microbes regulate energy use. 

By exploring how certain proteins are modified within bacterial cells, Elmore’s research could help to realize that understanding. The proposed work builds upon the project he led within PNNL’s Predictive Phenomics Initiative, which focuses largely on unraveling the mysteries of molecular function in complex biological systems.

Much of the work from this year’s recipients could deliver wide-ranging implications in diverse fields—Cox’s research into nuclear chemistry being a prime example. Cox plans to study the basic chemical behavior of a subset of heavy elements known as actinides. With key roles in nuclear energy, environmental cleanup, energy storage, and even nuclear non-proliferation, a better understanding of why actinides behave the way they do could benefit many. 

“It takes a special place like PNNL that has the access and the ability to handle these unique elements safely,” said Cox, who has pursued this line of research for roughly half a decade. “It was very exciting to find out that my proposed research was chosen, and I’m even more excited to venture out into a new scientific direction,” he added.

###

About PNNL

Pacific Northwest National Laboratory draws on its distinguishing strengths in chemistry, Earth sciences, biology and data science to advance scientific knowledge and address challenges in energy resiliency and national security. Founded in 1965, PNNL is operated by Battelle and supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the DOE Office of Science website. For more information on PNNL, visit PNNL’s News Center. Follow us on TwitterFacebookLinkedIn and Instagram.




Jefferson Lab Tapped to Lead Technology Development for Exploring Nuclear Waste Treatment Options | Newswise


Newswise — NEWPORT NEWS, VA – The U.S. Department of Energy (DOE) Advanced Research Projects Agency-Energy (ARPA-E) has selected DOE’s Thomas Jefferson National Accelerator Facility to lead two research projects that will develop new technologies for better managing the waste from nuclear power plants. The $8.17 million total in grants come from the Nuclear Energy Waste Transmutation Optimized Now (NEWTON) program.

The goal of both projects is to improve existing particle accelerator technologies, one of Jefferson Lab’s key areas of expertise, and repurpose them for applications beyond fundamental research.

“Based on our own success in developing cutting-edge accelerator technologies to enable scientific discoveries, we believe that there is a contribution we can make with the experience we have gained over the last few decades,” said Rongli Geng, who is a principal investigator on both grants. Geng heads the SRF Science & Technology department in Jefferson Lab’s Accelerator Operations, Research and Development division.

Accelerator-Driven Systems Save the Day

According to ARPA-E, unprocessed used nuclear fuel “reaches the radiotoxicity of natural uranium ore after approximately 100,000 years of cooling. Partitioning and recycling of uranium, plutonium, and minor actinide content of used nuclear fuel can dramatically reduce this number to around 300 years.” The NEWTON program grants are aimed at enabling this recycling effort, so that it can be applied to “the entirety of the U.S. commercial used nuclear fuel stockpile within 30 years.”

This work is aimed at moving toward economic viability of transmutation of nuclear waste, a key priority of the NEWTON program. Specifically, the NEWTON grants will support the further development of accelerator-driven systems (ADS). ADS can transform highly radioactive and long-lived nuclear waste into less radioactive, shorter-lived materials, while also producing additional electricity.

An ADS is composed of a particle accelerator that propels a beam of high-energy protons at a target material such as liquid mercury. As the protons interact with the target, the material “spalls” or releases neutrons that are directed at containers of spent nuclear fuel.

“These neutrons will interact with these unwanted isotopes and convert them into more manageable isotopes that you can either try out for some beneficial use or bury underground. Instead of having a lifetime of 100,000 years in storage, for example, you can shorten the storage years down to 300,” Geng said.

Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF) is a state-of-the-art particle accelerator that represented a huge leap forward in efficiency when it came online for its first experiment in 1995. It was the first large-scale installation of superconducting radiofrequency technology. Today, it supports the research for more than 1,700 nuclear physicists worldwide.

SRF technology powers many of the most advanced research accelerators in the world, including CEBAF and the accelerator that powers the Spallation Neutron Source at DOE’s Oak Ridge National Laboratory. Both accelerators are DOE Office of Science user facilities that enable research in the basic and applied sciences.

Improving ADS Technology

The first project aims to amp up the SRF particle accelerator components in ADS. The focus in this grant is on boosting the components’ efficiency.

In today’s world-class research machines, SRF particle accelerator cavities are made of a pure, silver-colored metal called niobium. Niobium becomes superconducting at extremely low temperatures, a key requirement for their efficiency. The downside to that efficiency is that big research machines must be supported by separate and costly cryogenic refrigeration facilities.

Recently, Jefferson Lab and other research facilities have found that coating the inside surfaces of pure niobium accelerator cavities with tin can make these components even more efficient, allowing them to not only operate at higher temperatures but also with standard commercial cooling units. This work builds on the research and development work supported by DOE’s Nuclear Physics (NP) program and NP’s Early Career Award (ECA) program.

The $4,217,721 grant will allow collaborators from Jefferson Lab, RadiaBeam Technology and Oak Ridge National Lab to further improve the cavities. The researchers plan to test niobium-tin cavities that have specifically been designed to accelerate protons for spalling neutrons. 

“Those are based on the mature Spallation Neutron Source cavity design, but we will add the new tin material on this existing design,” explained Geng. “So that will be tested together with our partners at Oak Ridge National Lab.”

A second goal of the grant is to design new SRF cavities that feature a more complicated design but will drive the machine efficiency even higher with enhanced neutron spallation.

“We’re going to design, build and test a new class of cavities called the spoke cavities,” Geng said. “Very likely, the whole machine will be based on this SRF technology, so this is the kind of innovation that is going to be an additive value.”

The Driving Force for ADS

The second project will focus on powering up the SRF accelerator cavities inside the ADS particle accelerators. For that, the researchers will turn to a common component that also powers the pops that turn ordinary corn kernels into light and fluffy popcorn: the magnetron.

In particle accelerators, magnetrons would provide the power that the SRF cavities harness to propel particle beams. The tricky part here is that the frequency of the energy supplied by the magnetron must match the frequency of the particle accelerator cavity, which is 805 Megahertz.

“We need a lot of power – 10 Megawatts or more. That’s why the efficiency becomes very critical,” Geng said.

For the $3,957,203 grant, the team will be working with Stellant Systems, one of the major players in magnetron manufacturing, to produce advanced magnetrons that can be combined to boost performance at the design frequency. The project team also includes General Atomics Energy Group and Oak Ridge National Laboratory.

“Stellant is tasked to design and prototype this new magnetron, and we’re going to collaborate with General Atomics and Oak Ridge National Lab to do the power combining test,” Geng explained. “That’s the main objective: demonstrate the high power, high efficiency at 805 Megahertz.”

He added that this work builds on research and development work supported by DOE’s Accelerator R&D and Production (ARDAP) program. This program helps ensure that new and emerging accelerator technology will be available for future discovery science and societal applications. Its support was instrumental in developing the technologies that are now at a place where they are ready to be adapted to contribute to the goal of safely maintaining the waste materials produced in nuclear power generation.

Both projects are also already on the path to commercialization of these technologies. By including commercial entities in these initial phases, Jefferson Lab and its partners are helping to not only transfer the specialized knowledge and expertise that will make the resulting technologies successful, but they are also developing these technologies with considerations of the capabilities of companies who would be manufacturing ADS and supporting their operations.

According to Geng, “The challenge is to really translate the accelerator science from where we are right now in terms of technology readiness to where the technology needs to be for this application.”

Further Reading:
Jefferson Lab Research and Technology Partnerships Office
Jefferson Lab Dedicates Niobium-tin Particle Accelerator Prototype
Benchmarking CEBAF
Supercool Delivery: Final Section of Souped-Up Neutron Source Trucks Out of Jefferson Lab
Jefferson Lab technology, capabilities take center stage in construction of portion of DOE’s Spallation Neutron Source accelerator
Smoother Surfaces Make for Better Accelerators
Adapting Particle Accelerators for Industrial Work
Mixing Metals for Improved Performance
Conduction-cooled Accelerating Cavity Proves Feasible for Commercial Applications
Liquid Helium-Free SRF Cavities Could Make Industrial Applications Practical
Award enables research for more efficient accelerators
Microwave Popcorn to Particle Accelerators: Magnetrons Show Promise as Radiofrequency Source

-end-

Jefferson Science Associates, LLC, manages and operates the Thomas Jefferson National Accelerator Facility, or Jefferson Lab, for the U.S. Department of Energy’s Office of Science. JSA is a wholly owned subsidiary of the Southeastern Universities Research Association, Inc. (SURA).

DOEs Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science

 




Mantle Plume Versus Plate Tectonics | Newswise


Newswise — Around 56 million years ago, Europe and North America began pulling apart to form what became the ever-expanding North Atlantic Ocean. Vast amounts of molten rock from Earth’s mantle reached the ocean floor as the crust stretched and thinned, creating a volcanic rifted margin between Norway and Greenland, a marine feature that has intrigued scientists for decades.

They have long argued over why so much magma surfaced here in what was among the biggest volcanic events in Earth’s history, one that is implicated in a period of intense global warming during the Eocene Epoch. Was a deep, superhot mantle plume responsible, or did crustal thinning play the bigger role?




Wine, Science, and Spectroscopy: Georgia Tech Outreach Produces Published Research | Newswise


Newswise — New work from Georgia Tech is showing how a simple glass of wine can serve as a powerful gateway for understanding advanced research and technologies.

The project, inspired by an Atlanta Science Festival event hosted by School of Chemistry and Biochemistry Assistant Professor Andrew McShan, develops an innovative outreach and teaching module around nuclear magnetic resonance (NMR) techniques, and is designed for easy adoption in introductory chemistry and biochemistry courses. 

Published earlier this year in the Journal of Chemical Education, the study, “Automated Chemical Profiling of Wine by Solution NMR Spectroscopy: A Demonstration for Outreach and Education” was led by a team from the School of Chemistry and Biochemistry including lead author McShan, Ph.D. students Lily CapeciElizabeth A. Corbin, Ruoqing JiaMiriam K. Simma, and F. N. U. Vidya, Academic Professional Mary E. Peek, and Georgia Tech NMR Center Co-Directors Johannes E. Leisen and Hongwei Wu.

“NMR is one of the most widely used analytical tools in chemistry and the life sciences, and Georgia Tech hosts one of the most cutting-edge NMR centers in the world,” McShan says. “Our study shows that you don’t need advanced training to appreciate how powerful tools like NMR work and how those tools are used in research.”

All materials, tutorials, and data are freely available via online tutorials and a YouTube video, enabling educators to replicate or adapt the activity even in settings with limited access to NMR facilities.

Wine sleuthing at the Atlanta Science Festival

From families with K-12 students to undergraduates to adults with no prior chemistry experience, nearly 130 visitors explored wine chemistry at the Georgia Tech NMR Center during the Atlanta Science Festival event. With McShan’s guidance, they identified and quantified more than 70 chemical components that influence wine taste, aroma, and quality by analyzing the chemical composition, structure, and dynamics of molecules.

Taking on the role of wine investigators (a real-world application of NMR), the group investigated examples of wine fraud, learning to identify harmful additives like methanol, antifreeze, and lead acetate – additives that played roles in both historical and modern wine scandals.

“By connecting the science to something familiar like wine, we were able to spark curiosity and excitement across age groups,” says McShan. “This a framework for how complex analytical techniques can be made inclusive, interactive, and inspiring whether in the classroom or at a science festival.”

Science for all

The study underscores the potential of NMR and other powerful technologies as outreach opportunities – from engaging the public to better teaching undergraduate students.

“After the event, adults said they learned how chemical composition affects wine characteristics and how NMR is used in research and industry,” McShan says. “Younger participants learned key concepts about wine composition and found benefits from the sensory elements, like watching the spectrometer in action.”

They aim to use these takeaways to continue developing outreach tools. “My end goal is to develop NMR into a practical teaching tool by grounding the technique in real-world examples,” adds McShan. “Using this approach is a clear avenue to introducing the general public to the world-class instruments used by researchers at Georgia Tech and exposing undergraduate students to the powerful analytical techniques they are likely to encounter throughout their careers.”

 

Funding: National Science Foundation